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a b s t r a c t 

Image analysis is a widespread and performant tool for the characterization of particulate systems in 

chemical engineering. However, for bubbly flows, due to the wide range of particles size, shape and the 

appearance of large clusters resulting from particles projections overlapping at high hold-up, automatic 

particle detection remains a challenge. An efficient methodology for bubbly flow characterization based 

on pattern recognition is presented. The proposed algorithm provides an exhaustive, robust and compu- 

tationally efficient way of analyzing complex images involving large ellipse clusters even in concentrated 

medium. The method is fully automated. A sub-clustering approach enables significant computation time 

reduction. Moreover, thanks to its ease of parallelization, it allows considering real time monitoring. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Image analysis has become a powerful tool for monitoring par-

ticulate systems as the ones encountered in chemical processes,

using information extracted from a 2D orthogonal projection of

a population of 3D particles [1–3] . The term particles is used in

this context to designate specifically either bubbles or droplets.

Although the experimental part is rather simple and consists of

a limited number of set-ups, the image processing methods are

many and various. Since the popular Hough transform circle de-

tection [4] and its extension to ellipses detection [5,6] , whose ap-

plication range is usually far from the particulate systems encoun-

tered in industrial processes, a lot of studies have been dedicated

to the improvement of image processing algorithms. However, the

still more or less manual detection of the 2D orthogonal projec-

tion of the particles, and the lack of automatic suitable approaches

in the case of dense populations, are among the main remaining

challenges to be addressed. While promising algorithms are cur-

rently emerging to enable fully automatic particle characterization

[7,8] , robustness issues still arise when large aggregates of 2D pro-

jection of particles are involved. These clusters are indeed very dif-
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cult to analyze and specific approaches are necessary. In basic

lgorithms, these clusters are ignored based on constraint condi-

ions such as sphericity or convexity index. Classical image analy-

is reasoning does indeed consider that 2D projection of the parti-

les within clusters occurs as a non-selective process and that ig-

oring these clusters would not bias the measurement. However,

arge projections of particles are more likely to be present in clus-

ers rather than as individual entities [9] . Thus, ignoring clusters in

he measurement would bias the analysis. 

There are two major classes of methods for pattern recognition

n a 2D image: the non-parametric techniques such as the mor-

hological watershed transform, and the parametric techniques,

ike the Hough transform or other direct object fitting algorithms.

ere, the term object refers a 2D bounded set in the Euclidean

lane. Lau et al. [10] used the classical watershed transform to de-

ermine the particle size distribution (PSD) in dense particle flows.

owever the objects were assumed to be circular, which is likely

o induce a shift of the PSD towards the large particles size and

n apparent overestimation of the number of detected particles

aused by the processing itself. Still considering the watershed

ransform, Karn et al. [7] separated the in-focus particles from the

ut-of-focus ones, which are extracted by using morphological op-

rations, and treated each population independently. This method-

logy reduces the risk of over-segmentation frequently encoun-
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ered with the watershed transform [11] . Farhan et al. [12] used an

lternative non-parametric approach. They detected split lines in a

lump of 2D convex objects and iterate to refine these split lines

sing the image intensity. Their technique proved to be efficient

nd gave satisfactory results in situations where particles touch but

o not overlap. While this is the case for the microscopy images

f human cells they studied, this situation is rarely encountered

n typical chemical engineering applications. Recently, a hybrid ap-

roach has been suggested by Fu and Liu [1] . The authors used the

enefits of three well known segmentation methods: the water-

hed transform, the skeleton image and an adaptive threshold [13] .

y coupling these techniques, one compensate for the drawbacks

f each of the 3 methods used separately for segmentation. Based

n several examples of individualization of objects within a cluster,

atisfactory agreement was additionally assessed by the authors.

any examples of parametric processing methods applied to the

etection of particles projections are also related in the literature.

or their study of emulsification kinetics, Khalil et al. [14] assumed

hat the droplets were spherical and they investigated the time-

volution of the PSD using the famous Hough transform developed

y Illingworth and Kittler [4] . However, this method failed when

oo many projections of particles overlap, even if the generalized

ough transform is used. For their study of bubbly flows, Honka-

en et al. [15] proposed an original algorithm to detect overlapping

llipses corresponding to the 2D orthogonal projections of ellip-

oidal bubbles in a dense population. In this approach, the bound-

ry of the particles cluster is first detected. Then the points of the

oundary that represent the connecting points of overlapping ob-

ects (subsequently referred to as concavity points) are found. The

ections of the edge delimited by the connecting points and be-

onging to the same object are grouped. At last an ellipse is fit-

ed on each cluster of edge segments. However, the method used

or grouping the edge segments is not fully robust and often leads

o incorrect detection even in the case of small clumps of objects.

ore recently, an improved method was proposed by Zhang et al.

16] . It consists of grouping the segments according to an average

istance deviation criterion (called ADD) between the fitted ellipse,

n one hand, and the corresponding group of segments in the im-

ge on the other hand. However, instead of solving the global min-

mization problem according to the merit function ADD, the au-

hors proposed to group the segments according to 3 constraints.

hile the technique described by Zhang et al. [16] provides a sig-

ificant improvement for the detection of ellipses in a clump of

bjects ( e.g. compared to Honkanen et al. [15] and Shen et al. [17] ,

he constraints imposed are empirical and must be adjusted for

ach new configuration of overlapping ellipses. An alternative ap-

roach based on seed points extraction and fast radial symmetry

ransform has been recently proposed by Zafari et al. [18] for the

egmentation of overlapping elliptical objects in poor quality im-

ges. Although the method is robust and fast, it is strongly depen-

ent on the performance of the seed points extraction. 

Hence, among the available image processing techniques, none

f them are really suitable for fast and/or efficient detection of

verlapping, and possibly non-spherical particles, such as the ones

revailing in images typical of the dense bubbly flow encounters in

any industrial applications. In this study, using the ADD criteria

rought out by Zhang et al. [16] , we describe a fully automated

ethod for grouping the edge segments which is both efficient

n terms of ellipses detection, and from a computational point of

iew, by offering interesting parallelization potential to speed-up

he calculation, thus enabling online monitoring. 

. The proposed method 

In this section, the main steps to achieve ellipse cluster decom-

osition in a binary image are described. The prior transforma-
ion of gray level images into suitable binary images is treated in

ection 3.2 . Starting from a binary image, the pattern recognition

rocess consists of the following successive steps: i) identification

f all the Region of Interest (RoI) - note that a RoI can be an iso-

ated ellipse as well as a cluster of ellipses -, ii) extraction of the

dge of the whole RoI, iii) splitting the edge into segments sepa-

ated by connecting points, iv) grouping the segments, v) fitting an

llipse on each group of segment, vi) candidate ellipses evaluation

nd bad candidates rejection. 

.1. Detection of edge segments 

Identification of RoI in a 2D binary image and subsequent

ontour extraction is classical in image processing, and will not

e detailed further [19] . Segment detection along the contour

s achieved through the detection of what is called ”connecting

oints” [15] , i.e. the positions of local minima of the curvature

unction along the boundary. The curvature of a 2D set boundary

xists if the arc boundary of the regarded set is twice differentiable

ith continous second derivative. Methods to compute the curva-

ure of a boundary set on a 2D image can be found in [20] . These

onnecting points can therefore be interpreted as concavity points,

hich will be used by the detection algorithm. 

Here, the detection method proposed by Farhan et al. [12] is

sed. A straight line segment of user-defined length connecting

wo points of the contour is moved along the boundary. As long as

he straight line segment is totally enclosed in the cluster (in green

n Fig. 1 ), the convexity of the boundary between the two contour

oints is guaranteed. Otherwise (in red in Fig. 1 ), there exists at

east one concavity point in this particular part of the contour. The

xact location corresponds to the maximum of the Euclidean dis-

ance between the considered contour segment and the probe line.

hen, only one concavity point can be detected when the convex-

ty condition is violated. The process, illustrated in Fig. 1 a, is re-

eated until the boundary is totally swept. Note that the length of

he straight line segment has to be adapted in order to minimize

he number of missed concavity points, as shown in Fig. 1 b. 

Practically speaking, the construction of the line segment is as

ollowed. Pick up a pixel of the contour. The line joining this pixel

nd the one of the contour located at 25 pixels away is the straight

ine segment. In this way, its length is changing depending on the

urvature of the arc of the contour that defines it. This construction

s robust as it can fit to the shape of any cluster of objects. It has

een observed through experiments that such a distance - fixed

ere at 25 - between the extremities of the line segment gives sat-

sfactory results. Moreover, slightly changing this value ( e.g. ± 10

ixels) does not really affect the detection of the concavity points.

here are two ways of defining the step size when the straight line

egment is moved along the contour. If the convexity criterion is

atisfied, the third adjacent point to the previous first extremity of

he straight line segment is taken as the initial point. Otherwise,

he third adjacent point to the previous second extremity of the

ine segment is chosen. 

Following the detection of concavity points, the contour is di-

ided into n segments (where n is the number of concavity points).

ach segment is assumed to belong to at least one ellipse embed-

ed in the cluster, and an ellipse can potentially include several

egments. As a consequence, it is mandatory to find the best com-

ination of the n segments into p ellipses in order to extract the

ost probable cluster decomposition. It is worth noting that other

ethods for detecting these concavity points have been proposed

n the literature such as the detection of local minima in the curva-

ure function [15,20,21] , a breakpoints detection by rotating curve

17] or a polygonal approximation technique used by Zhang et al.

16] . The technique adopted in this paper has the merit to be fast,

obust and easy to implement. 
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Fig. 1. Illustration of the method of concavity points detection - (a) Detection of a concavity point (marked with a plain blue circle) (b) Situation where a concavity point is 

missed (marked with an open blue square). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The i th combination (in red) is matched with an ellipse (in blue). For each 

point j of the i th combination ( x i, j , y i, j ) the distance to the corresponding point of 

the fitted ellipse (x 
′ 
i, j 

, y 
′ 
i, j 

) is calculated. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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In order to improve the efficiency of the algorithm, the area of

the convex hull, A CH , of clusters exhibiting a single concavity point

is calculated, and compared to the area, A , of the considered cluster

using the following ratio: 

cv x = 

A 

A CH 

(1)

This merit function, cvx , is directly connected to the convexity of

the cluster. By comparing cvx with a given threshold (here 0.95)

it becomes possible to discriminate a single ellipse from clusters

of two ellipses with a single concavity point. When a cluster of

two ellipses is detected then a second connecting point is added in

front of the first one. This additional process reduces fitting errors.

2.2. Segment association and ellipse selection 

The next step addresses segment combination and ellipse fit-

ting. As discussed in introduction, several grouping methods have

been evaluated in the literature [15–17,20] . They generally suf-

fer either from bad recognition, as in the case of large cluster

of particles, or from robustness issues, as in the case of highly

noisy images or from relatively high computing time requirements.

The proposed method, called Global Segments Combinations (GSC),

is based on an exhaustive enumeration of all possible combina-

tions of segments, followed by a selection of the best combination

thanks to a merit function, and is aimed at addressing these weak-

nesses. 

The Stirling partition numbers (also called Stirling number of

the second kind) are particularly convenient to perform this enu-

meration task. Indeed, in combinatorics, the Stirling partition num-

ber P ( n, p ) designates the number of possible ways to partition a

set of n objects into p non-empty subsets. For any value of n and

p, P ( n, p ) can be calculated according to the following expression:

P (n, p) = 

1 

p! 

∑ 

n 1 + ... + n p = n 
n i > 0 

n ! 

n 1 ! . . . n p ! 
(2)

Once all combinations have been identified in a cluster or a sub-

cluster, the segments are grouped according to these different enu-

merated combinations, and an ellipse is fitted for each obtained

portions of contour. For instance, in the simple case n = 3 , there

are 5 different ways of grouping the segments: i) 3 ellipses are

generated to fit the single combination of the 3 “groups” of indi-

vidual segments in P (3, 3), ii) 2 candidate ellipses are considered

for each of the 3 possible combinations of 2 groups of segments

( e.g. 1 individual segment and 1 pair of segments), within P (3, 2),

iii) at last one single ellipse is treated in P (3, 1), that accounts for

the single combination gathering the all 3 segments in the same

group. 
The direct least-square fitting algorithm developed by Fitzgib-

on et al. [22] is used to assess the quality of the ellipse fitting

n terms of the Average Distance Deviation (ADD) between the can-

idate ellipses and the corresponding contour position. Denoting

 the number of pixels in the considered group of segments, and

onsidering the i th group of segments within a set of combinations

ncluding k groups of segments, it reads in Cartesian coordinates:

DD i = 

1 

m 

i 

m 

i ∑ 

j=1 

√ 

(x i, j − x 
′ 
i, j 

) 2 + (y i, j − y 
′ 
i, j 

) 2 (3)

here m 

i is the number of pixels of the i th group of segments,

 x i, j , y i, j ) are the Cartesian coordinates of pixel j belonging to the

 th group of segments, (x 
′ 
i, j 

, y 
′ 
i, j 

) are the Cartesian coordinates of

he corresponding point j of the ellipse fitted to the i th group of

egments. This point is defined as the intersection between the fit-

ed ellipse and the line going through both its center and the point

f coordinates ( x i, j , y i, j ), see Fig. 2 . 

The notion of distance adopted for expressing ADD i can be con-

eniently reformulated as follow: 

DD i = 

1 

m 

i 

m 

i ∑ 

j=1 

⎛ 

⎝ 1 − 1 ∣∣∣ x 2 
i, j 

a 2 
i 

+ 

y 2 
i, j 

b 2 
i 

∣∣∣

⎞ 

⎠ (4)

here a i and b i denotes the two semi-axis of the ellipse i . Com-

ared to Eq. (3) , Eq. (4) involves only known parameters. It can be

valuated from simple trigonometric calculations. Finally the total

verage distance deviation ADD tot , used as the merit function of the

onsidered combination, is obtained by summing the ADD of the
i 
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Fig. 3. Schematic illustration of a concavity point-pair matching on a cluster. (For 

interpretation of the references to color in the text, the reader is referred to the 

web version of this article.) 
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Fig. 4. Illustration of cluster decomposition and ellipse fitting in the case of a clus- 

ter involving 17 segments - (a) Initial cluster and detected split - (b) resulting sub- 

clusters and ellipse fitting. (For interpretation of the references to color in this fig- 

ure legend, the reader is referred to the web version of this article.) 

Fig. 5. Example of a missing connecting point due to a smooth overlapping of el- 

lipses. The blue ellipse is due to a bad segment association. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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 contributing groups of segments in the combination: 

DD tot = 

k ∑ 

i =1 

ADD i (5) 

The combination that exhibits the smallest total average dis-

ance deviation ADD tot among the P n possible combinations (cor-

esponding to the Bell numbers) is retained as the solution. 

.3. Large cluster decomposition 

As previously discussed, the evaluation of all combinations is

ossible only if the number of segments remains limited. Other-

ise, the cluster must be subdivided. The main idea of the decom-

osition technique is to find appropriate split lines to divide the

luster. A split line is a line which passes through a pair of con-

avity points and separates the element into sub-clusters of rea-

onable size, i.e . including less than 8 or 9 segments. Additionally,

 minimum number of segments (4 or 5) is imposed in order to

revent the separation of segments involved in the same ellipse.

s an example, a cluster of 24 segments will be divided into 3 sub-

lusters of about 7–9 segments while a cluster of 23 segments will

e divided in 2 sub-clusters of 7–9 segments and one sub-cluster

f 5–7 segments. Note that these parameters are determined con-

idering the processing time and not adjusted for each image. The

etection of split lines is an iterative process based on the work of

arhan et al. [12] . It is depicted on Fig. 3 . Starting from a concavity

oint, a local chord (in red in Fig. 3 ) is extracted and a directional

ector (in yellow), orthogonal to the local chord, is calculated. A

ectangular area which starts from the local chord and following

he direction of the vector is constructed, the size of which is iter-

tively increased until including another concavity point. This sec-

nd point is then linked to the first concavity point to define a split

ine. Using this split line, the cluster is divided in two sub-clusters

nd the number of segments included in each sub-clusters is eval-

ated. If one of the two sub-clusters matches the size condition,

he split line is retained. Otherwise, the entire process is repeated

tarting from the next concavity point in the contour. 

The whole process, i.e. cluster decomposition and ellipse fit-

ing, is illustrated in Fig. 4 , in the case of a 17 segments cluster.

n this example, the initial cluster is decomposed into three sub-

lusters of 5, 4 and 8 segments respectively. The total number of

ombinations, initially equal to 8.28 × 10 11 is subsequently reduced

o P + P + P = 4207 , thus highlighting the relevance of the de-
5 4 8 
omposition. Sub-clustering moreover provides a high potential of

arallelization to the algorithm. Indeed, the GSC algorithm can be

rocessed independently on each sub-cluster, and the final result

s obtained by a simple concatenation of each sub-cluster solution.

.4. Ellipses checking and bad fitting rejection 

The algorithm is strongly dependent on the connecting points

etection. Missing a connecting point can occur during the detec-

ion process, for instance in strongly overlapping configurations.

his may induce incorrect segment associations and therefore false

llipse fitting, as illustrated in Fig. 5 , where the 3 overlapping el-

ipses in the cluster at the bottom of the image are modeled by

wo unsuitable objects. To minimize the impact of this kind of er-

ors, a final test is performed on each detected candidate. A mask,

orresponding to the considered ellipse is constructed and used to

etect the pixels embedded in the ellipse, in the binary image. If

he number of pixels with a 0 value is smaller than a given cri-

erion (typically 10% of the total number of pixels), the candidate

llipse is retained, otherwise it is rejected. 
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Table 1 

Performances of the 3 tested methods, including the proposed GSC, for highly 

dense ellipses population images (50 images of approx. 200 objects each). 

Algorithm TPR PPV JSC 

Zafari et al. [24] 0.84 0.85 0.79 

Park et al. [23] 0.67 0.87 0.71 

Proposed method 0.87 0.95 0.91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Compared features of the particles populations. 

Criteria Actual population Measured population 

Number of objects 9216 8750 

Max D eq 56.3 px 88.9 px 

Min D eq 24.6 px 5.7 px 

Mean D eq 40.0 px 40.1 px 

Variance D eq 6.7 px 8.4 px 
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3. Results and discussion 

3.1. Performance evaluation on synthetic images 

The algorithms performance was first assessed using synthetic

images. Indeed, the number of objects involved in a synthetic im-

age is perfectly known and each object is fully characterized, which

is usually not the case for ”real” images. To this aim, a set of

50 synthetic images of 150–200 overlapping elliptical objects was

considered. For the 90 0 0 ellipses in the test case the semi-minor

axis, denoted a , follows a uniform law in the interval [10, 20] pix-

els, and the semi-major axis, denoted b , follows a uniform law in

the interval [15, 40] pixels. They cover, on average, 22.19% ± 0.36%

of the total image surface, which is a typical value encountered in

bubbles or droplets flows. Here, no constraint has been imposed

on the overlapping ratio: ellipses can completely cover each other. 

The proposed method, i.e the GSC algorithm combined with the

sub-clustering approach, was compared to two techniques pulled

from the state of the art, whose codes are available online, and

that are adapted to the detection of clustered ellipses: the method

proposed by Park et al. [23] based on a classification and the one

proposed by Zafari et al. [24] based on ellipses fitting. For compar-

ison purposes, three usual quantitative performance metrics were

used: the Jaccard Similarity Coefficient (JSC), the True positive Rate

(TPR) and the Positive Predictive Value (PPV). The TPR and PPV are

defined as followed 

T P R = 

T P 

T P + F N 

(6)

P P V = 

T P 

T P + F P 
(7)

where TP (True Positive) is the number of correctly segmented el-

lipses, FN (False Negative) is the number of missed ellipses and

FP (False Positive) is the number of incorrectly segmented ellipses.

The TPR can be interpreted as the conditional probability of de-

tecting an ellipse given that the ellipse is indeed correct, while the

PPV corresponds to the probability that a segmented ellipses is a

correct ellipse. The JSC provides a more quantitative measurement

of the quality of the segmentation process. Starting from a binary

image of the segmented ellipse E s , the JSC is computed with the

following expression: 

JSC = 

E s ∩ E t 

E s ∪ E t 
(8)

where E t is the binary map of the true ellipse. The JSC requires a

threshold value. Following [24] recommendations, we fixed it to

0.5. Given an image, the JSC are generally averaged in order to

form a new metric, the AJSC (average JSC) which measures the

mean segmentation performance in the image. The statistics ob-

tained on the same computer with the three competing methods

for the set of 50 synthetic images considered here are summarized

in Table 1 . Note that for the 2 literature methods, the adjustable

parameters were set to the values recommended by the authors.

As evidenced by Table 1 , the GSC method outperforms the 2 other

methods regardless of the considered metrics. Otherwise, CPU pro-

cessing times are equivalent for the 3 methods, and revealed to be
ow compared to conventional methods used for multiphase flow

pplications, that are not able to handle large clusters. 

For the sake of illustration, the results obtained on a single im-

ge are compared in Fig. 6 (blue stands for real data, red for GSC,

reen for Zafari et al. [24] and magenta for Park et al. [23] ). The

SC method was further tested on the whole set of images con-

idering the equivalent diameter, a more relevant metric for mul-

iphase flow characterization. The equivalent diameter, D eq , is de-

ned as the diameter of the disk with the same area as the el-

ipse: D eq = 2 
√ 

ab . More than 95% of the ellipses are detected by

he GSC method. Two tails are however exhibited in the distribu-

ion returned by the algorithm ( Fig. 7 ). They stand for particles that

re out of the range of diameters in the image and whose size is

ither underestimated (on the left-hand side) or overestimated (on

he right-hand side) by the algorithm. Each tail represents respec-

ively 2.0 and 2.5% of the detected objects, which is nevertheless

 satisfactory result since at least 90% of the ellipses are correctly

easured by the model. An excellent agreement is also achieved

egarding the two first moments of the distribution (see Table 2 ),

hat are usual indicators of bubbly flow systems. Moreover, this

ood agreement is also consistent with the morphological features

f the dispersed phase. For instance, the comparison of the ellip-

icity information of the numerical target and the one returned by

he algorithm shows that more of 91% of the results are strictly

ncluded in the target range. 

To highlight the benefit of the post-processing procedure, the

etection of ellipses was repeated without the post-processing. The

esulting distribution is plot in red in Fig. 7 . It can be observed

hat the post-processing strongly reduces the number of wrong de-

ected ellipses of a larger size. Thus, while the first moment of the

istribution does not change that much (41.2 px), the standard de-

iation is much higher when no post-processing is used (9.7 px

ompared to 8.4 px). Consequently, the error on the standard de-

iation is more important if the post-processing procedure is not

sed (44.8%). 

.2. Application to real bubbly flow images 

Besides the good results achieved on synthetic images, the per-

ormances of the proposed GSC method have been investigated on

 set of experimental gas-liquid flow images. 

The flow takes place in a glass cylinder (height 250 mm, di-

meter 100 mm) provided at mid-height with two opposite pla-

ar optical windows in order to minimize light distortions. The

ank is filled with deionized water, and air is injected at the bot-

om through a sintered glass disk (with pore size in the range 40–

0 nm). Due to buoyancy, bubbles are rising in the liquids, pass

n front of the windows and freely escape the cylinder at the top.

hree gas flow-rates have been tested in order to generate different

ize and concentration of bubbles ( Q = 5 , 10 , 50 L/h). 

The optical setup consists in a green collimated light-source,

 bi-telecentric lens (magnification × 17.2 μm/pixel) and a high

esolution and high dynamic CMOS camera (1.1 MPixel, 12 bits).

cquisitions are conducted at 50 fps, with an exposure time of

/60,0 0 0 s in order to “freeze” the bubble’s motion. Such a con-

guration, associating bi-telecentric lens and collimated light, is
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Fig. 6. Example of segmentation results on a synthetic image including 200 ellipses: (a) real data, (b) Zafari et al. [24] , (c) Park et al. [23] , and (d) GSC. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Comparison of the relative frequency of equivalent diameter between the 

numerical target and the proposed algorithm results (with and without post- 

processing). 
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articularly suitable for two-phase flow observation as it provides

igh contrast images. Indeed, due to the bi-telecentricity, the sen-

or records a shadow which strictly corresponds to the object’s

rojected area, and the local contrast between the particles and
he image’s background is generally excellent (more than 20 con-

idering the Weber’s contrast and a 8 bits image). 

Although the exact number and the features of the particles

re not known in this case, this test enables the code robustness

n real images to be assessed, e.g. images subjected to light het-

rogeneity, noise, and other biases. The surface concentration of

ubbles has been evaluated from bubble density measurements

n the 2D images, to respectively: 35.1% ± 3.2%, 37.9.1% ± 3.2% and

7.9% ± 5.1%. Note that the surface concentration is not represen-

ative of the actual gas hold-up in the equipment. Moreover, ac-

ording to Clift et al. [25] the formation of ellipsoidal bubbles is

romoted under the considered operating conditions. 

A pre-processing procedure, that aims to binarize the recorded

ray-level images, is applied in order to extract the edge of each

luster or isolated particles. It consists of four main steps: i) mean

mage calculation and subtraction from each original image in the

ataset, in order to achieve a more uniform background, ii) en-

ancement of the contrast by applying a top-hat and a bottom-hat

lter, iii) noise removal using a median filter, and iv) application

f an automated local thresholding [26] . Some cleaning operations

re also performed to fill the holes and to remove the very small

articles (less than few pixels) by morphological opening with a

isk-shape structuring element. At last, the particles or clusters

ouching the image borders, and therefore not totally displayed, are

emoved. 

The GSC method has been applied to identify the different par-

icles on the experimental images. The result of the ellipse fitting

rocedure is illustrated in Fig. 8 . This typical image exhibits a high
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Fig. 8. Performances of the proposed algorithm on an experimental acquisition. 

( Q = 10 L/h). 181 ellipses have been detected. The red boxes highlight the two bad 

fits. Note that clusters touching the border are not considered. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Evolution of the relative frequency of equivalent diameter with the gas flow- 

rate obtained from the analysis of 50 images (more than 40 0 0 bubbles per case). 
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proportion of clusters, and highlights the non-sphericity of most

bubbles, that justifies the need for an algorithm capable of han-

dling these features. 

The agreement between the detected ellipses (in pink) and the

bubble edges is very good, with only 2 bad fittings versus 181 cor-

rect detections, thus attesting the algorithm efficiency on real im-

ages. Usually three cases of bad ellipse detection are observed. The

first one is obviously when the bubbles do not exhibit an ellipse

shape but more likely a caps shape. In this case, although an el-

lipse is fitted on the contour, the latter is rejected by the bad fit-

ting rejection process. The second case occurs for clusters with a

very complex shape, for which some concavity points are not de-

tected. Again, the wrong candidate ellipses are not retained by the

rejection method described in Section 2.4 . The third issue concerns

out-of-focus bubbles that exhibit blurred contours. The restora-

tion of out-of-focus particles has already been addressed by Presles

et al. [27] . This methodology can be used here, for instance using

the Sum-of-Modified Laplacian to detect the out-of-focus particles

[28] . 

Using this technique, process evolutions can efficiently be mon-

itored. Thereby, Fig. 9 compares the evolution of the equivalent di-

ameter for increasing gas flow-rate values. It has to be emphasized

that the detection is not made for clusters of objects that hit the

edges of the observation window. Thus, some edge effects appear

that introduce a bias for the computation of the density number of

objects [29] or for the estimation of size distribution [9] . This is-

sue can be handled by taking a sub-image (a reference window) of

the observation window where only detected particles are observ-

able. Then, only particles whose centroid belongs to this reference

window are taken into consideration. This sampling rule is called

the Miles’ associated point rule [30] . Alternatively, the Gundersen’s

tiling rule can also be applied [31] . These techniques are classical

methods in the field of stereology to derive unbiased estimators

[29] . 

The physical behavior of the system is quite well captured by

the optical chain and the image processing method. While a nar-

row PSD is observed at moderate flow-rate ( Q = 5 L/h), the lat-
er broadens as the flow-rate increases due to more coalescence

vents (most of them where observed to occur at the sparger’s

urface). Increasing the flow-rate moreover results in an increase

f the proportion of clusters in the image (as evidenced by the in-

erts in Fig. 9 ). 

. Summary and conclusion 

This paper presents a complete method for recognizing highly

verlapping ellipses. Thanks to the GSC algorithm and the sub-

lustering process, the proposed method provides an exhaustive,

obust and computationally efficient ellipse recognition algorithm

n large clusters. Its performances have been assessed on synthetic

mages, which enabled to compare the distributions of the equiv-

lent diameter of the detected and generated objects. Even if an

xhaustive enumeration could be seen as a naive approach at first,

t turns out to be a powerful method for dealing with larger clus-

ers when it is combined with the decomposition procedure pro-

osed. Optimizing the grouping process on a limited search space,

s it is usually done in the literature, leads to a lack of robustness

nd of accuracy. The comparison in Section 3 with two other ex-

sting methods using a segment grouping approach has highlighted

ignificant improvements: 95% of the segmented ellipses were cor-

ect for the proposed algorithm compared to the proportion of 87%

resp. 81%) for the one of Park et al. [23] (resp. Zafari et al. [18] ).

oreover, there is also a good agreement in the first two moments

f the distribution of the equivalent diameter. 

An application of the algorithm on real images of a typical

iphasic-flow encountered in chemical engineering application has

ighlighted the relevance of the proposed model for process mon-

toring purposes. Indeed, the method is automated, robust and re-

uires a limited number of manual parameters adjustment. Typical

nalysis time for a classical image (1 Mpx, 200 overlapping par-

icles) is about 2 minutes on a basic computer. Due to the sub-

lustering approach, cpu time can be significantly decreased by

arallelization on several cores, thus opening up perspectives for

eal time control and in-situ monitoring of multiphase flow pro-

esses. Although significant improvement is achieved thanks to the

roposed algorithm, the method is still limited to systems consid-

ring simple geometric shapes (circles, ellipses, etc.). Future work

ill address more complex particle’s shape and a direct estimation

f 3D particles characteristics. 
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