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Abstract

Macroporous alumino-silicate are catalytic materials used in chemical and petroleum 
industries. Their selectivity and activities are directly linked to the morphology of their texture.
By means of 3D transmission electron microscopy (3D-TEM) images, complex information 
about the structure at the nanometric scale can be obtained. A segmentation method coupled with 
a method of extraction of the volume of pores keeping intact the irregularity of the surface are
presented. Porosity and specific surface area are calculated and compared with classical
measures using other physical measurement methods. An analysis of the pore connectivity is 
presented using a pore-to-pore tortuosity map processed using geodesic constrained distance 
propagations. It allows a global quantification of the connections between the pores in order to 
estimate the accessibility to the catalyst for a molecule of a known size.     

Introduction

The increasing level of research for nanoparticles and nanostructured materials performed 
on the nanometric scale requires powerful tools to characterize objects. In particular, in chemical 
or petroleum industries, researchers face the difficulty to precisely known the results of 
interaction between catalytic particles and the porous structure of their support. The selectivity 
and activities of catalysts materials is directly linked to the morphology of their texture. The 
recent development achieved in transmission electron microscopy (TEM) with automation of 
signal acquisition allows new characterization capabilities of nanomaterials by means of 
tomographic techniques. With the obtained 3D transmission electron microscopy (3D-TEM) 
images, complex information about the morphology at the nanometric scale can be performed 
[1]. A specific analysis of such 3D images allows the quantification of the volume and the 
specific surface area of the pores. Such data are extremely important for catalytic cracking of 
heavy crude oil, because one must be able to predict if a heavy molecule can enter or not inside 
the grain of catalysts before cracking. This kind of questions will be more and more a hot topic, 
as the price of the barrel rises, and the quality of the oil decreases. In the paper, we  focus on the 
analysis of macroporous alumino-silicate catalysts by means of 3D-TEM images. Three samples 
of this material are analyzed. An efficient method of pre-filtering and segmentation of the 3D 
images is presented. A technique to extract the porous network is also explained. Measurement 
of the porosity and of the specific surface area are achieved and compared to other physical 
measurement methods to validate both segmentation and extraction techniques. Also a specific 
analysis is performed in order to obtain information about the accessibility to the pores for a 
molecule of a known diameter.
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Acquisition of 3D-TEM images of macroporous alumino-silicate

Macroporous alumino-silicate catalysts are obtained by aerosol synthesis [2] made of 
spherical macroporous and mesoporous particles, with microporous alumino-silicate walls. The 
diameter of these particles is about 200 nm to 2 µm. Three samples of these material are studied 
using 3D-TEM images. The acquisition of 3D-TEM images is achieved in several steps:
• automatic TEM bright field images acquisition of series of projections of the materials (Fig. 1). 
• semi-automatic alignment of projections by cross-correlation technique and particles tracking 
technique.
• tomographic reconstruction by filtered retroprojection technique.

3D images of the samples are obtained with a resolution of 0.5 nanometer by voxel 
(within the three axis) (Fig. 1). For practical purposes (essentially for memory and time 
processing limitations), in the following, sub-sampled images are used for the proposed image 
processing and analysis. 

Figure 1. Left, 2D-TEM projection image of  a typical porous alumino-silicate (0.5nm / voxel). Right, crop of its 3D-
TEM reconstruction image (1.7nm / voxel).

Automatic segmentation of the 3D-TEM images

Pre-filtering for noise and artifacts reduction

A correct segmentation between the material and the outside must be achieved in order to 
analyse the porous network of the macroporous alumino-silicate samples. To remove the noise 
and to smooth the artefacts due to the tomographic reconstruction, a first step of pre-filtering 
should be performed. Two methods of pre-filtering are been compared. 

The first one, is an anisotropic diffusion filter [3]. This kind of filter is commonly use in 
medical images for preserving edges and reducing noise and texture. Mathematically anisotropic 
diffusion is formulated as:
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where g is the image, t refers to the iteration step and c is a diffusion function (monotonically 
decreasing function of the image gradient magnitude). A very common choice for c is
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e)g(c , where K is a conductance parameter, which controls the sensitivity of 
the process to edge contrast. Typical values of parameters are given by Insight Segmentation and 
Registration Toolkit (ITK) consortium [4] in the case of 3D data smoothing : 10 iterations,                   
t=0.0625 and K=3. 

The second method of pre-filtering that we compared is a bilateral filter [5] with a 
specific implementation. The bilateral filter is a nonlinear and non iterative filter which smooth a 
signal while preserving strong edges. It derives from a blur filter but it prevents blurring accross 
edges by decreasing the weight of pixels when the intensity difference is too large. The output O 
of the bilateral filter for an image I with spatial support D and a pixel x is given by:
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Several edge-stopping functions can be used for f and g such like Gaussian functions, or Tukey's 
biweight function for instance. In our case, best results are obtained using this last one with 
parameters σ=3 and 20 for f and g respectively : 
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In the literature, several fast implementation of this filter are proposed [6] [7].  We choose to 
implement a non exact formulation of the filter with low memory consuming and fast 
computation. We linearize the filter and use direct convolution [8] .

For memory and time consuming purpose, we chose to use the bileral filter with the 
specific mentioned implementation. The results are still accurate compared to these obtained 
with an anisotropic diffusion filter. (Fig. 2).

Figure 2. Planar cut of the 3D-TEM image of a porous alumino-silicate (1.7nm / voxel). Left to right: initial image; 
image after anisotropic diffusion  filtering; image after bilateral filtering.
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Segmentation of the material

After this pre-filtering, the inside of the material appears globally with dark grey voxels, 
while the outside appears with light grey voxels. Unfortunately these two sets are not 
homogenous, so a segmentation only based on the analysis of the histogram is not sufficient. We 
propose an automatic segmentation with two steps. The first step is based on an analysis of the 
histogram to determine approximately the markers of the two sets. The second step consists in 
completing the segmentation by means of a propagation of the markers using a watershed 
operator [9]. 

In the first step, the histogram histo(t), [ ],Mt 0∈ of the initial 3D-TEM image IniMat is 
segmented in order to obtain markers. We use the fact that a fraction fin of the darkest voxels 
belongs surely to the material, and that a fraction fout of the lightest voxels belongs surely to the 
outside. A threshold thrMIV separating approximately the material and the outside is obtained by 
an automatic method using maximization of the interclass variance [10]. Two types of markers 
can be defined for the material Markin and for the outside Markout on the image IniMat(p) with 
spatial support D (Fig. 3) :
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Figure 3. Planar cut of the 3D-TEM image of a porous alumino-silicate (1.7 nm / voxel). From left to right : initial 
filtered image; markers Markin (in black) Markout (in white) for fin= fout=0.6; result of the watershed segmentation of 

the material.

In the second step, the segmentation is completed by propagating the markers using a 
unbiased watershed operator [9] on the contour image of the initial image (Fig. 3). This image is 
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interpreted as a topographic relief where the contours correspond to crest lines of the relief. The 
topographic relief is then flooded starting for the markers considered as minima. The watershed 
lines are the meeting line of two flooding fronts coming from two distinct minima.

An accurate image of the contours is computed by applying a first derivative Gaussian 
filter with σ=2 [11][12]. We obtain an image of the segmented material SegMat:

SegMat=watershed(GaussFirstDer(IniMat,σ=2),Markin∪ Markout)

At this stage, an accurate segmentation of the material is obtained (Fig. 4).

Fig. 4. Segmentation of a 3D-TEM image of the material.

Extraction of the porous volume

To extract the porous network, we propose to fill the pores inside the material by means 
of an approach using morphological mathematic tools. First, the maximum diameter maxdiam of 
the pores has to be calculated:
• An estimation of the convex envelop ConvEnv of the material SegMat is necessary. For 
instance, we can compute it by means of a morphological close of infinite size (in practical, the 
size of the close is chosen higher than the maximum diameter of all the pores).

ConvEnv= φ∞(SegMat)

• A geodesic constrained distance d [13] [14] is propagated from the material within the outside. 
We obtain an image DistOut:

DistOut= )(SegMatd cSegMat

where SegMatc is the complementary image of SegMat.

• An approximation of the maximum diameter maxdiam of the pores is given by the maximum of 
the distance inside the convex envelop.
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maxdiam { }ConvEnvppDistOut ∈= )(max

The value maxdiam is then used in morphological geodesic operations [15] in order to 
extract the porous volume. The morphological geodesic dilation and erosion of size n of a set X 
within the set Y are given by respectively :
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where Yc is the complementary image of Y.

The extraction is then performed in three steps: 

• To surely fill all the pores of the material, we perform a morphological geodesic dilation of size 
maxdiam of the segmented material SegMat within the outside SegMatc. We obtain a new image 
DilSegMat.

DilSegMat= )( diammax

SegMatCδ (SegMat)

At this stage, all the pores of the initial material are filled.

• To completely restore the external irregularity on the external surface of the material, we 
achieve a morphological geodesic erosion of size k.maxdiam of DilSegMat within the outside 
SegMatc. The value of k should be chosen greater than the maximum between one and the height 
hSirrmax equals to the highest irregularity on the surface of the material. In practical, an estimation 
of this irregularity is difficult, and k is taken equals to 2. By this way, we obtain a new image
EroDilSegMat.

EroDilSegMat= ).( diammaxk

SegMatCε (DilSegMat)

By taking k.maxdiam with k>max(1,hSirrmax), the surface irregularity of the material is totally 
recovered, but the volume of pores is underestimated.

• The porous volume is finally obtained by a morphological geodesic dilation of size (k-
1).maxdiam of EroDilSegMat within the outside of the material SegMatc. We obtain a new image
PorousVol :

PorousVol= )diam1).max-((k

SegMatCδ (EroDilSegMat)

With this final operation, the porous volume PorousVol is extracted without filling the 
irregularity on the surface of the material.

At the end of these three steps, an accurate estimation of the internal porous volume of 
the material is obtained keeping intact the surface irregularity (Fig. 5). Also, the external surface 
SurfExtPore of emerged pores can be obtained by taking the intersection between the porous 
volume PorousVol and the complementary of the filled volume FillVol dilated by a ball of radius 
one. FillVol is the union between the material and the extracted porous volume.

FillVol=PorousVol∪ SegMat

SurfExtPore=(PorousVol∩δ1(FillVolc))

1158



Fig. 5. Left: initial material (SegMat) and by transparency the inside porous network (PorousVol). In color, external 
surface of emerged pores (SurfExtPore). Right: Extracted porous network of the material (PorousVol).

Estimation of the macro porosity and of the specific surface area using image analysis

We compare some measurements performed by image analysis with physical ones to 
validate both methods of segmentation and extraction of the porous network. The volume can be 
estimated by counting the number of voxels of the image PorousVol. By taking a density of 1.2 
g.cm-3, which is the value of a classical microporous alumino-silicate, an estimation of 0.337 
cm3.g-1 for the macro porosity is obtained (Tab. 1). This value can be compared to nitrogen 
adsorption measurements estimated to 0.22 cm3.g-1±0.05 cm3.g-1. This result is suitable with our 
results obtained by automatic image analysis. If we do not consider the result obtained with the 
lowest resolution volume (sample 3) witch is the most imprecise one, the results for the other 
volumes are very close to the physical measurement method (Tab. 1).

An estimation of the specific surface area of the macro-porosity can be achieved by 
means of an estimation of the surface area of the porous volume within the material. This area 
can be estimated using the image PorousVol and the image SurfExtPore :

Area (PorousVol) – Area(SurfExtPore)
where SurfExtPore is the external surface of the emerged pores (calculation explained previously). 

To compute this area directly on the discrete volume composed by voxels, a surface area 
estimation by weighted local configurations is used [16]. Other similar method can also be used 
[17]. We obtain an estimation of 30 m2.g-1 (Tab. 1). This result can be compared to classical 
physical techniques such as nitrogen adsorption measurement, coupled to mercury porosity,
which gives a surface area of 31 m2.g-1 for the macro porosity. This result is very close to our 
result achieved using automatic image analysis.
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Table 1 Macro porosity and specific surface area of the three samples of macroporous alumino-silicate.

Sample
Resolution
(nm/voxel)

Porosity
(cm3/g) 

Specific surface 
area (m2/g) 

1 2.24 0.299 28.4
2 1.68 0.238 24.4
3 7.18 0.474 37.3

Average 0.337 30

Accessibility to the porous network

Information about the connectivity of the pores can be achieved by the study of the 
porous volume. The method of analysis that we present further to estimate the accessibility from 
a pore to one other for a molecule of a known size. With this kind of data, we can predict if a 
heavy molecule can or not enter and exit inside the grain of catalyst. To obtain this information, 
we build a pore-to-pore tortuosity map. A similar approach is used in [18] with the  calculation 
of a pore-to-pore distance map. 

The pore-to-pore tortuosity map is given by the ratio between geodesic and Euclidean 
distance between two external surfaces of the emerged pores. The binary image of the external 
surfaces of the pores SurfExtPore obtained previously have to be labelized in connected 
components in order to identify each emerged pores. The Euclidean distance distEucpi-pj between 
two pores pi and pj can be estimated by the distance between the barycenters bpi and bpj of their 
emerged surface pi

ExtPoreSurf and pj

ExtPoreSurf . 

The geodesic distance distGeo is obtained as follows. We calculate the 3D skeleton SqP
of the porous network by means of 3D curve thinning method [19]. 

SkP = 3DThinning(PorousVol)

This binary skeleton can be valuated by the corresponding local section diameter of the 
pores obtained by taking the value of the skeleton by ultimate erosion UEskeleton [20] of 
PorousVol dilated by a sphere of diameter equals to maxdiam (the maximum diameter of the 
pores, estimated in a previous section). This local section diameter corresponds to the maximum 
ball that can be contained locally in the pores.

SkP= maxdiamδ (UEskeleton(PorousVol)) ∈p SkP

To surely connect the skeleton of the porous network SkP to the external surface of 
emerged pores, we take the union between SkP and the geodesic dilation of size maxdiam of 
SurfExtPore in PorousVol.

SkP= ( )  SkPSurfδ ExtPore

maxdiam

PorousVol ∪

Illustrations of the calculated skeleton for the sample 2 is showed in figure 6.
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Fig. 6. Skeleton of the porous network (SkP) of the sample 2 for different planar cuts. 

Now, we can propagate for each emerged pores pi identified by its emerged surface 
pi

ExtPoreSurf , a geodesic constrained distance from pi

ExtPoreSurf within the skeleton of the porous 

network to obtain Distpi. 
Distpi=dSkP( pi

ExtPoreSurf )

The distance distGeopi-pj from the pore pi to one other pores pj is achieved by taking the average 
distance observed on the emerged surface pj

ExtPoreSurf of the pore pj: 

distGeopi-pj = pj

ExtPorepi Surfp(p)istD ∈

where (p)istD pi is the average value of the image Distpi calculated on points p.
The pore-to-pore tortuosity map is then obtained by the ratio between distEucpi-pj and 

distGeopi-pj for all possible combinations of pi-pj. The deletion of points p of SkP equals to a 
value s, is equivalent to fill all the pores of minimum section diameter s. By iteration of the given 
procedure with different value of s, we obtain the accessibility pore-to-pore tortuosity map for 
molecules with diameter inferior or equals to s. Such a map can be visualized by means of a 2D 
histogram with values corresponding to the pore-to-pore tortuosity (Fig. 7). A pore-to-pore 
maximum size molecule accessibility map can be calculated by taking, for each pore-to-pore 
connection, the maximum diameter before the cutting of this connection (Fig. 8). A 
characterization of the accessibility to a catalyst can be performed by the calculation of the 
percentage of the interconnections between pores where molecules of a given diameter can go 
thought the entire material (i.e. can enter by a pore and exit by one other) (Fig. 9). We can notice 
that for the 3 samples, 100% of the interconnections between pores can be crossed by molecules 
with a maximum diameter of approximately 5 nm (asphaltenes for instanceà. For the samples 1 
and 2, 50% of these interconnections can be still crossed by molecules with a maximum diameter 
of approximately 12nm. For the sample 3, the same result is obtained by molecules with a 
maximum diameter of approximately 17nm. Such analysis give us precise knowledge about the 
activity of the these catalysts, and the type of products on which it could be active.
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Fig. 7. Pore-to-pore tortuosity maps for given sizes of molecules for sample 2. The axis correspond to the label of 
pores. Black points correspond to indefinite tortuosity (the geodesic distance between the two pores is infinite, the 

connection between the two pores is cut). 

Fig. 8. Pore-to-pore maximum size molecule accessibility map for the sample 2. The axis correspond to the label of 
pores. Each point (i,j) corresponds to the maximum size of  molecules that can go from the pore i to the pore j.
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Fig. 9. Percentage of pores interconnections where molecules of a given diameter can go thought the entire 
material. Top left: sample 1. Top right: sample 2. Down: sample 3.

Conclusions

In this paper, we present an application of segmentation techniques for 3D-TEM images 
of macroporous alumino-silicate. This material is an efficient catalytic material used in 
petroleum industries. A method for an automatic extraction of the porous network keeping intact 
the surface irregularity is proposed. The accuracy of the methods for both segmentation and 
estimation of the porous volume is validated by comparison of measurements of the porosity and 
of the specific surface area between image analysis and global physical methods. An analysis of 
the porous network by means of a pore-to-pore tortuosity map is also presented. Such analysis 
give information about availabilities for molecules of a given diameter to cross the material. 
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